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ABSTRACT

In the present paper we study the set of b-bistochastic quadratic stochas-
tic operators. Using the description of such kind of operators, we inves-
tigate extreme points of the set of b-bistochastic quadratic stochastic op-
erators (q.s.o) acting on two dimensional simplex. Further, we introduce
weaker conditions of extreme points called quasi-extreme of the set b-
bistochastic quadratic stochastic operators (q.s.o) and study its relations
with extreme points of the set b-bistochastic linear stochastic operators
defined on two dimensional simplex.

Keywords: Quadratic stochastic operators (q.s.o), b-order, bistochas-
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1. Introduction

In the previous century, the theory of linear operators has been vigorously
studied and it has been well developed ; so it is natural to consider nonlin-
ear operators. The simplest case starts with a quadratic one. It turns out
that quadratic operators have tremendous applications in various field such as
physics, disease dynamics,evolutionary biology, economic and social systems
(see Hofbauer and Sigmund (1998), Lyubich et al. (1992)). No matter the ef-
forts of countless researchers that have introduced several different classes of
quadratic operators, it is noteworthy to acknowledge the fact that it is not an
easy task and therefore, the topic has still not been covered. Consequently,
in this paper, we are focusing on quadratic stochastic operators which can
be traced back to Bernstein’s work Bernstein (1924) (see Mukhamedov and
Ganikhodjaev (2015) for review) that he usd to describe the distribution evo-
lution of individuals in a population. In addition, these operators were used as
a crucial source of analysis especially in the study of dynamical properties and
modelings in many different fields such as biology (Goel et al. (1971), Hofbauer
and Sigmund (1998)), physics (Plank and Losert (1995), Takeuchi (1996)), eco-
nomics and mathematics (Goel et al. (1971), Lyubich et al. (1992), Takeuchi
(1996)).

One can comprehend the time evolution of species in biology by the fol-
lowing situation. By letting I = 1, 2, . . . , n be the n type of species (or traits)
in a population, we denote x(0) = (x

(0)
1 , ..., x

(0)
n ) be a probability distribution

of the species in early state of that population and the probability individual
in the ith species and jth species cross-fertilize to produce an individual from
kth species (trait) be Pij,k. Given x(0) = (x

(0)
1 , ..., x

(0)
n ), we can find probabil-

ity distribution of the first generation, x(1) = (x
(1)
1 , ..., x

(1)
n ) by using a total

probability, i.e.,

x
(1)
k =

n∑
i,j=1

Pij,kx
(0)
i x

(0)
j

This relation defines an operator which is denoted by V and it is called
quadratic stochastic operator (q.s.o.). In other words, each q.s.o. describes
the sequence of generations in terms of probability distributions Pij,k. In
Ganikhodzhaev et al. (2011), Mukhamedov and Ganikhodjaev (2015),they have
given self-contained exposition of the recent achievements and open problems
in the theory of the q.s.o. One of the main problems in this theory is to study
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the behavior of such kind of operators in which the difficulty of the problem
depends on the cubic matrix (Pijk)

m
i,j,k=1. An asymptotic behavior of the q.s.o.

even in the small dimensional simplex is complicated (see for example Zakhare-
vich (1978)).

The majorization (see Hardy et al. (1986)) has an important impact on
many branches of sciences. For example, the idea of majorization continues to
be used in other fields such as chemistry and physics, but they used different
names such as "x is more mixed than y", "x is more chaotic than y" and "x
is more disordered than y". One of the examples is given by Zylka and Vojta
(1991).

A new order called majorization introduced by Parker and Ram (1996).
This new order opened a path for the study to generalize the theory of ma-
jorization of Hardy, Littlewood and Polya used in Hardy et al. (1986). Due to
the fact that new majorization is defined as a partial order, it has additional
applications compared to classical majorization (see also Helman et al. (1993)).
Moreover, in Parker and Ram (1996), linear stochastic operators preserving the
order are described which in the first place, sparked our interest to investigate
the case for quadratic operators.

To differentiate between the terms majorization and classical majorization
(Hardy et al. (1986)), from now onwards, we will consider majorization as
b-order (which is denoted as ≤b) while the classical majorization will be ma-
jorization (which is denoted as ≺). In Mukhamedov and Embong (2015), the
definition of b-order preserving q.s.o., i.e. V (x) ≤b x for all x ∈ Sn−1, called
b-bistochastic was introduced. Therefore, we have explored descriptive prop-
erties of b-bistochastic q.s.o. in Mukhamedov and Embong that allowed us
to find sufficient conditions on cubic stochastic matrix to be a b-bistochastic
q.s.o.(see Mukhamedov and Embong). To broaden our research, other prop-
erties of b-bistochastic q.s.o. have been analysed in Mukhamedov and Em-
bong,Mukhamedov and Embong (2016). We point out that a q.s.o. which
preserves the majorization (i.e. V is bistochastic, if V (x) ≺ x for all x ∈ Sn−1)
was investigated in Ganikhodzhaev et al. (2012), Ganikhodzhaev (1993). In
general, a description of such kind of operators is still an open problem.

In this paper, we continue our previous investigations on b-bistochastic op-
erators. In section 2, we recall necessary results to describe extreme points
of the set of b-bistochastic q.s.o. The main goal of this paper is to describe
extreme points of the set of b-bistochastic q.s.o. on low dimensional simplices
(see section 3). Lastly, in section 4, we introduce weaker conditions of extreme
points called quasi-extreme of the set b-bistochastic q.s.o, and study its relations
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with extreme points of the set b-bistochastic linear stochastic operators.

2. b-order and b-bistochastic operators

Throughout this paper we consider the simplex

Sn−1 =

{
x = (x1, x2, ..., xn) ∈ Rn

∣∣∣∣xi ≥ 0,
n∑
i=1

xi = 1

}
. (2.1)

Define the functionals Uk : Rn → R (k = 1, 2, . . . , n− 1) by

Uk(x1, . . . , xn) =
k∑
i=1

xi. (2.2)

Let x,y ∈ Sn−1. We say that x b-ordered or b-majorized by y (x ≤b y) if
and only if Uk(x) ≤ Uk(y), for all k = 1, . . . , n− 1.

The introduced relation is a partial order i.e. it satisfies the following con-
ditions:

(i) For any x ∈ Sn−1 one has x ≤b x,

(ii) If x ≤b y and y ≤b x then x = y,

(iii) If x ≤b y, and y ≤b z then x ≤b z.

where x,y, z ∈ Sn−1. Moreover, it has the following properties:

(i) x ≤b y if and only if λx ≤b λy for any λ > 0.

(ii) If x ≤b y and λ ≤ µ, then λx ≤b µy.

Using the defined order, one can define the classical majorization (Marshall
et al. (1979)). First recall that, for any x = (x1, x2, . . . xn) ∈ Sn−1, we define
x[↓] = (x[1], x[2], . . . x[n]), where

x[1] ≥ x[2] ≥ · · · ≥ x[n]

122 Malaysian Journal of Mathematical Sciences



Extremity of b-bistochastic Quadratic Stochastic Operators on 2D Simplex

is nonincreasing rearrangement of x. The point x[↓] is called rearrangement of
x by nonincreasing order. Take two elements x and y in Sn−1, then it is said
that an element x majorized by y and denoted x ≺ y if x[↓] ≤b y[↓]. We refer
readers to Marshall et al. (1979) for more information regarding this topic. One
sees that b-order does not require a rearrangement of x by nonincreasing.

Any operator V with V : Sn−1 → Sn−1 is called stochastic. We call that a
stochastic operator V is b-bistochastic if V (x) ≤b x for all x ∈ Sn−1. In what
follows, we will study quadratic b-bistochastic operators.

Recall that V : Sn−1 → Sn−1 is called quadratic stochastic operator (q.s.o.)
if V has a form

V : x
′

k =

n∑
i,j=1

Pij,kxixj , k = 1, 2, ..., n , (2.3)

where {Pij,k} are the heredity coefficients with the following properties:

Pij,k ≥ 0, Pij,k = Pji,k,

n∑
k=1

Pij,k = 1, i, j, k = 1, 2, ..., n . (2.4)

Remark 2.1. In Ganikhodzhaev (1993) q.s.o was introduced and studied with
V (x) ≺ x for all x ∈ Sn−1. Such an operator is called bistochastic. In our
definition we are taking b-order instead of the majorization. Note that if one
takes absolute continuity instead of the b-order, then b-bistochastic operator
reduces to Volterra q.s.o. (Mukhamedov (2000), Mukhamedov et al. (2016),
Volterra and Brelot)

Theorem 2.2. Mukhamedov and Embong (2015) Let V : S1 → S1 be a q.s.o,
then V is a b−bistochastic if and only if

P22,1 = 0, P12,1 ≤
1

2
.

Now let us consider a q.s.o. V defined on S2. For the sake of simplicity let
us denote

P11,1 = A1 P13,1 = C1 P23,1 = E1

P11,2 = A2 P13,2 = C2 P23,2 = E2 (2.5)
P12,1 = B1 P22,1 = D1 P33,1 = F1

P12,2 = B2 P22,2 = D2 P33,2 = F2
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and

M = 1−2C1−2C2, N = D2−2E2, P = 1−2E2, Q = B1+B2−C1−C2−E2,

R = (A1 +A2 − 2C1 − 2C2), K = 2(RN −Q2)

a = A1 +A2 +D2 − 2B1 − 2B2, b = 2B1 + 2B2 − 2D2, c = D2 − 1.

In Mukhamedov and Embong (2015) we have proved the following result.

Theorem 2.3. Let V : S2 → S2 be a q.s.o., then V is a b-bistochastic if and
only if

(i) F1 = E1 = D1 = F2 = 0

(ii) B1 ≤
1

2
, C1 ≤

1

2
, E2 ≤

1

2

(iii) C1 + C2 ≤
1

2

and one of the followings are satisfied:

(I) a > 0

(II) a < 0 and one of the followings are satisfied:

(1) b < 0

(2) b > −2a
(3) b2 − 4ac ≤ 0

Let T be a linear stochastic operator T : Sn−1 → Sn−1 such that

T (x)k =

n∑
i=1

tikxi where tik ≥ 0,

n∑
k=1

tik = 1. (2.6)

In fact, for every linear stochastic operator, it can be associated with a
stochastic matrix. Define a q.s.o. VT generated by heredity coefficient

P
(T )
ij,k =

1

2
(tik + tjk) ,
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then one gets VT (x) = T (x). Therefore, VT is b-bistochastic if and only if T is
b-bistochastic.

Let T be a linear stochastic operator defined on two dimensional simplex
and T be its corresponding matrix. It is clear that

T =

T (e1)T (e2)
T (e3)

 and xT = T (x), x ∈ S2 (2.7)

From Theorem 2.3, one has the following result.

Corollary 2.4. (Parker and Ram (1996)) Let T be a stochastic operator de-
fined on S2. Then, T is a b-bistochastic operator if and only if T is an upper
triangular stochastic matrix, i.e,

T =

t11 t12 t13
0 t22 t23
0 0 1


Proof. Let T be b-bistochastic, then VT is a b-bistochastic operator. Hence,
from Theorem 2.3 we get

P33,1 = P23,1 = P33,2 = 0.

Thus, we obtain the following:

P33,1 =
t31 + t31

2
=⇒ t31 = 0, P23,1 =

t21 + t31
2

=⇒ t21 = 0, t31 = 0,

P33,2 =
t32 + t32

2
=⇒ t32 = 0.

Evidently, we obtain T upper triangular stochastic matrix. Vice versa, we may
define an operator given by (2.6), thus

T (x)1 = t11x1 ≤ x1,
T (x)1 + T (x)2 = t12x1 + t22x2 ≤ x1 + x2.

This shows that T is b-bistochastic.

Note that, the last corollary can be extended to any finite dimensional
simplex, and it was proven in Mukhamedov and Embong (2017), Parker and
Ram (1996). Now we want to prove an analogue of a theorem of Hardy et al.
(1986).

Malaysian Journal of Mathematical Sciences 125



Mukhamedov, F. and Embong, A. F.

Theorem 2.5. ( Parker and Ram (1996)) Let x,y ∈ S2, then y ≤b x if and
only if there exists a b-bistochastic operator T such that T (x) = y.

Proof. Clearly, if we have T (x) = y and T is a b-bistochastic operator, then
y ≤b x. Conversely, let y ≤b x. Now we want to show the existence of a
b−bistochastic operator T such that T (x) = y. Due to Corollary 2.4, we need
to find a stochastic matrix

T =

a b c
0 d e
0 0 1

 ,
which satisfies xT = y.

This means, one needs to solve the followings system:

ax1 = y1 (2.8)
bx1 + dx2 = y2 (2.9)

cx1 + ex2 + x3 = y3 (2.10)

Since (2.10) depends on (2.8) and (2.9), so it is enough to study the first two
ones. Lets us show the existence of a, b and d in the interval [0,1] under the
conditions y1 ≤ x1 and y1+ y2 ≤ x1+x2. We consider several cases as follows:

Case 1. Let x1 = 0, which implies y1 = 0, since y1 ≤ x1. Thus for any
a ∈ [0, 1],(2.8) holds. In fact, we have y2 ≤ x2, therefore from (2.9) one finds
d =

y2
x2

and d ∈ [0, 1] for any b ∈ [0, 1− a]. This shows the existence of a, b and
d.

Case 2. Consider x2 = 0. Due to the b-bistochasticity of T , we know
y1
x1
≤ 1, therefore a ∈ [0, 1] (see (2.8)). In this case, one finds that y2 ≤ x1

which yields b ≤ 1 (see (2.9)) for any d ∈ [0, 1]. Hence, a, b and d are found.

Case 3. In addition, we let x1 6= 0 and x2 6= 0. From (2.8) and the b-
bistochasticity, one immediately gets a ≤ 1. So, we found a and 0 ≤ b ≤ 1− a.
Obviously, (2.9) can be simplified to

d = (−x1
x2

)b+
y2
x2
.

Denoting f(b) = (−x1
x2

)b+
y2
x2

, then the last equality means that f(b) = d. Let

d∗ =
y2
x2
, b∗ =

y2
x1
, f−1(1) =

y2 − x2
x1

.
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Define

A = {(b0, d0)|f(b0) = d0, 0 ≤ b0 ≤ 1− a, 0 ≤ d0 ≤ 1} .

Further, we divide into four sub-cases, which are:

(i) d∗ ≤ 1 and 1− a ≥ b∗.

(ii) d∗ ≤ 1 and 1− a ≤ d∗.

(iii) d∗ ≥ 1 and 1− a ≥ b∗.

(iv) d∗ ≥ 1 and 1− a ≤ d∗.

Let us show for each sub-case, A is not empty.

(i) One can see that the set A is not empty since at least we have (b∗, 0) ∈ A.
In fact, we have f(b) = d ≤ 1 for all b ∈ [0, b∗] which will be elements of set A.

(ii) In this case, we find for all b ∈ [0, 1− a], d ≤ 1 one has (b, d) ∈ A, so A
is not empty.

(iii) One can check that 1 − a ≥ f−1(1) holds, otherwise we have the fol-
lowing:

1− y1
x1
≤ y2 − x2

x1
=⇒ x1 + x2 ≤ y1 + y2,

which is a contradiction. Consequently, there exists an interval I = [f−1(1), 1−
a] such that f(b) = d ≤ 1 for all b ∈ I. This shows A is not empty.

(iv) The proof for this case follows from (i).

The proof is completed.

Next, let V be a b-bistochastic q.s.o. defined on S2. Due to Theorem 2.5,
there exists an upper triangular stochastic matrix Tx such that xTx = V (x).
Let us assume Tx depends on x linearly, i.e.

Tλx+µy = λTx + µTy, µ, λ ≥ 0, µ+ λ = 1. (2.11)

So, this implies that, Tx can be written as follows

Tx = x1Te1 + x2Te2 + x3Te3 , x = (x1, x2, x3) ∈ S2.
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Therefore,

V (x) = xTx = x1(xTe1) + x2(xTe2) + x3(xTe3), x ∈ S2,

or

V (x)k =

3∑
i,j=1

tij,kxixj , k = {1, 2} (2.12)

The corresponding matrices Te1 ,Te2 and Te3 are given by upper triangular
stochastic matrices (see Corollary 2.4)

Te1 =

t11,1 t11,2 t11,3
0 t21,2 t21,3
0 0 1

 ,Te2 =

t12,1 t12,2 t12,3
0 t22,2 t22,3
0 0 1

 ,
Te3 =

t13,1 t13,2 t13,3
0 t23,2 t23,3
0 0 1

 .
Therefore, we are going to describe extreme b-bistochastic q.s.o. given by

(2.12) in next section.

Remark 2.6. We have to stress that in general, Tx may depend on x non-
linearly.

In what follows, the operator given by (2.12) will be denoted by

V = (Te1 , Te2 , Te3) (2.13)

Due to Pij,k = Pji,k one finds

V =


P11,1 P11,2 P11,3

0 P21,2 P21,3

0 0 1

 ,
0 P12,2 P12,3

0 P22,2 P22,3

0 0 1

 ,
0 0 1
0 0 1
0 0 1

 , (2.14)
; P12,2 = P21,2 ;

3∑
k=1

Pij,k = 1

}
.

3. Extreme Point Set of b-bistochastic QSO

If we consider the set of bistochastic linear operators, then it is impor-
tant to describe extremal points of this set. In this setting, the description
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is given in Marshall et al. (1979). When, we look at the set of bistochastic
q.s.o., then the description of extremal points is given in Ganikhodzhaev et al.
(2012), Ganikhodzhaev (1993). Therefore, in the present paper, we are going
to investigate the set of b-bistochastic q.s.o. and its extreme points as well.

Let us briefly recall some necessary notations. By Vb we denote the set
of all b-bistochastic q.s.o. An element of V ∈ Vb is called extremal, if from
2V = V1 + V2, where V1, V2 ∈ Vb it follows that V = V1 = V2. The set of all
extremal points of Vb is denoted by extrVb. Here and henceforth z = x ∨ y
means that z is either x or y. In Mukhamedov and Embong (2015), it was
proved that Vb is a convex set. Thus, it is interesting to describe extreme
points of the set Vb. Due to the complexity to describe all extreme points in
general cases, we restrict ourselves to low dimensional simplices.

3.1 Extremity on 1-D Simplex

In this subsection, we are going to describe extremal points of the set of
b-bistochastic q.s.o. defined on one dimensional simplex. Note that each such
kind of q.s.o. has the following form (see Theorem 2.2):{[

P11,1 P11,2

P21,1 P21,2

]
,

[
P12,1 P12,2

0 1

]
: P12,1 = P21,1 ≤

1

2
,

2∑
k=1

Pij,k = 1

}
. (3.1)

Theorem 3.1. Let V be a b-bistochastic q.s.o. defined on one dimensional
simplex. Then V ∈ extrVb if and only if V has one of the following forms:

(i)

{[
1 0
0 1

]
,

[
0 1
0 1

]}
(ii)

{[
0 1
0 1

]
,

[
0 1
0 1

]}
(iii)

{[
0 1
1
2

1
2

]
,

[
1
2

1
2

0 1

]}
(iv)

{[
1 0
1
2

1
2

]
,

[
1
2

1
2

0 1

]}

Proof. We will prove (i) is extremal point since the other three can be proven
by the similar way. Let V1 , V2 ∈ Vb, then one has

V1 =

{[
P

(1)
11,1 P

(1)
11,2

P
(1)
21,1 P

(1)
21,2

]
,

[
P

(1)
12,1 P

(1)
12,2

0 1

]}
,

V2 =

{[
P

(2)
11,1 P

(2)
11,2

P
(2)
21,1 P

(2)
21,2

]
,

[
P

(2)
12,1 P

(2)
12,2

0 1

]}
.

Assume that

2V = V1 + V2, (3.2)
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where V is given by (i).

Obviously, (3.2) can be rewritten as follows

0 =
(
P

(1)
11,1 − 2P

(1)
12,1 + P

(2)
11,1 − 2P

(2)
12,1 − 2

)
x1 +

(
2P

(2)
12,1 + 2P

(1)
12,1

)
.

Consequently, one gets

P
(2)
12,1 + P

(1)
12,1 = 0, P

(1)
11,1 + P

(2)
11,1 = 2

The positivity and stochasticity of Pij,k imply

P
(1)
12,1 = 0 P

(2)
12,1 = 0 P

(1)
11,1 = 1 P

(2)
11,1 = 1,

which means

V1 =

{[
1 0
0 1

]
,

[
0 1
0 1

]}
V2 =

{[
1 0
0 1

]
,

[
0 1
0 1

]}
(3.3)

This shows that (i) is an extremal point of Vb.

Conversely, if V ∈ extrVb, then from Theorem 2.2 one finds that the ex-
tremity of a b-bistochastic q.s.o. yields

P12,1 = 0 ∨ 1

2
, P11,1 = 0 ∨ 1.

Thus, the only possible entries are given by (i),...,(iv). This completes the
proof.

3.2 Extremity on 2-D Simplex

By V0,1 we denote the set of q.s.o. given by (2.14) such that Pij,k may take
0 or 1 only.

Theorem 3.2. One has V0,1 ⊂ extrVb

Proof. Let us show that for all elements in V0,1 belong to extrVb. Without loss
of generality, we may choose the following matrix:

V =


1 0 0
0 1 0
0 0 1

 ,
0 1 0
0 1 0
0 0 1

 ,
0 0 1
0 0 1
0 0 1

 . (3.4)

130 Malaysian Journal of Mathematical Sciences



Extremity of b-bistochastic Quadratic Stochastic Operators on 2D Simplex

Assume that

2V = V1 + V2, (3.5)

where V1, V2 ∈ Vb with

V1 =



A1,1,1 A1,1,2 A1,1,3

A2,1,1 A2,1,2 A2,1,3

A3,1,1 A3,1,2 A3,1,3

 ,

A1,2,1 A1,2,2 A1,2,3

0 A2,2,2 A2,2,3

0 A3,2,2 A3,2,3

 ,

A1,3,1 A1,3,2 A1,3,3

0 A2,3,2 A2,2,3

0 0 1


 ,

V2 =



B1,1,1 B1,1,2 B1,1,3

B2,1,1 B2,1,2 B2,1,3

B3,1,1 B3,1,2 B3,1,3

 ,

B1,2,1 B1,2,2 B1,2,3

0 B2,2,2 B2,2,3

0 B3,2,2 B3,2,3

 ,

B1,3,1 B1,3,2 B1,3,3

0 B2,3,2 B2,2,3

0 0 1


 .

Denote f(x1, x2) = V1(x)1 + V2(x)1 − 2V (x)1 and g(x1, x2) = V1(x)2 +
V2(x)2 − 2V (x)2, then one gets

f(x1, x2) = (−A3,1,1 −A1,3,1 −B1,3,1 +B1,1,1 +A1,1,1 −B3,1,1 − 2)x1
2 +

(A1,2,1 −A1,3,1 +A2,1,1 +B1,2,1 −A3,1,1 +B2,1,1 −B3,1,1

−B1,3,1)x2x1 + (B3,1,1 +A1,3,1 +A3,1,1 +B1,3,1)x1

and

g(x1, x2) = (A1,1,2 −B3,1,2 −A3,1,2 −B1,3,2 −A1,3,2 +B1,1,2)x1
2 +

(B1,2,2 −A2,3,2 −A3,1,2 +A1,2,2 −A3,2,2 −A1,3,2 −B2,3,2+

A2,1,2 −B3,1,2 +B2,1,2 −B1,3,2 −B3,2,2 − 4)x2x1 +

(B1,3,2 +A3,1,2 +B3,1,2 +A1,3,2)x1 +

(B2,2,2 − 2−B3,2,2 −A2,3,2 −A3,2,2 +A2,2,2 −B2,3,2)x2
2 +

(B3,2,2 +A2,3,2 +A3,2,2 +B2,3,2)x2.

From (3.5) we know that f(x1, x2) = 0 and g(x1, x2) = 0 for all 0 ≤
x1 + x2 ≤ 1.
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First, we investigate f(x1, x2). One can see that

f(x1, 0) = (−A3,1,1 −A1,3,1 −B1,3,1 +B1,1,1 +A1,1,1 −B3,1,1 − 2)x1
2 +

(B3,1,1 +A1,3,1 +A3,1,1 +B1,3,1)x1 = 0.

By the same argument in the previous subsection, we get

B3,1,1 = A1,3,1 = A3,1,1 = B1,3,1 = 0.

Consequently, by the last equalities one gets

A1,1,1 = B1,1,1 = 1.

Hence, f(x1, x2) = 0 reduces to

(A1,2,1 +A2,1,1 +B1,2,1 +B2,1,1)x2x1 = 0,

which means
A1,2,1 = A2,1,1 = B1,2,1 = B2,1,1 = 0.

Taking into account g(x1, x2) = 0, and letting x1 = 0 (respectively x2 = 0),
then we have

0 = (B2,2,2 − 2−B3,2,2 −A2,3,2 −A3,2,2 +A2,2,2 −B2,3,2)x2
2 +

(B3,2,2 +A2,3,2 +A3,2,2 +B2,3,2)x2.

(respectively 0 = (A1,1,2 −B3,1,2 −A3,1,2 −B1,3,2 −A1,3,2 +B1,1,2)x1
2 +

(B1,3,2 +A3,1,2 +B3,1,2 +A1,3,2)x1.)

Due to the stochasticity of the matrixes we find

B3,2,2 = A2,3,2 = A3,2,2 = B2,3,2 = 0, A2,2,2 = B2,2,2 = 1,

B1,3,2 = A3,1,2 = B3,1,2 = A1,3,2 = 0, A1,1,2 = B1,1,2 = 0.

Clearly, g(x1, x2) = 0 reduces to

(A1,2,2 +A2,1,2 +B1,2,2 +B2,1,2 + 4)x1x2 = 0,

which means
A1,2,2 = A2,1,2 = B1,2,2 = B2,1,2 = 1.

The results show us

V1 =


1 0 0
0 1 0
0 0 1

 ,
0 1 0
0 1 0
0 0 1

 ,
0 0 1
0 0 1
0 0 1


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and

V2 =


1 0 0
0 1 0
0 0 1

 ,
0 1 0
0 1 0
0 0 1

 ,
0 0 1
0 0 1
0 0 1

 .

For other possibilities, using the same argument we obtain desired statements.
This completes the proof.

4. Quasi-Extreme of the set b-bistochastic q.s.o.

In Theorem 2.3 we showed that the set of all b-bistochastic q.s.o. defined
on S2 can be described by an 8-dimensional body (in terms of the heredity
coefficients). Moreover, one concludes that the extreme points of Vb are de-
scried by the extreme points of that body. Hence, to fully describe elements of
extrVb we need to find all elements of the 8-dimensional body, which is a tricky
job. Instead of that, we would like to introduce a weaker condition than the
extremity, called quasi-extremity which is less complicated. In what follows,
we are representing {Pij,k} as in (2.5).

Definition 4.1. A b-bistochastic q.s.o. V defined on S2 is called quasi-
exrtremal if its corresponding heredity coefficients satisfy

(i) B1, C1, E2 = 0 ∨ 1
2

(ii) C1 + C2 = 0 ∨ 1
2

Theorem 4.2. Let T and S be linear b-bistochastic operators on Sn−1, then
for any b-bistochastic quadratic operators V , the operator S ◦ V ◦ T is also
b-bistochastic quadratic operator.

Proof. By using b-bistochasticity properties, we have (x = (x1, . . . , xn) ∈ Sn−1)
k∑
i=1

S(V (T (x)))i ≤
k∑
i=1

V (T (x))i ≤
k∑
i=1

T (x)i ≤
k∑
i=1

xi, for all k = 1, n− 1

this completes the proof.

Theorem 4.3. Let T = (Tij) and S = (Sij) be linear stochastic operators on
Sn−1 and let V be a q.s.o. on Sn−1. We denote

quv,k =

 n∑
i,j,l=1

Pij,l · Tu,i · Tv,j · Sl,k

 .
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If quv,k = qvu,k, then S ◦ V ◦ T is a q.s.o.

Proof. For any k = {1, 2, . . . , n} one sees that

S(V (T (x)))k =

n∑
l=1

Sl,k(V (T (x))l)

=

n∑
l=1

Sl,k

 n∑
i,j=1

Pij,l (T (x)iT (x)j)


=

n∑
l=1

Sl,k

 n∑
i,j=1

Pij,l

(
n∑
u=1

Tu,ixu

)(
n∑
v=1

Tv,jxv

)
=

n∑
l=1

n∑
i,j=1

n∑
u=1

n∑
v=1

(Sl,k · Pij,l · Tu,i · Tv,j)xuxv

=

n∑
u,v=1

 n∑
i,j,l=1

Pij,l · Tu,i · Tv,j · Sl,k

xuxv.

We may write

S(V (T (x)))k =

n∑
u,v=1

quv,kxuxv

where quv,k =

(
n∑

i,j,l=1

Pij,l · Tu,i · Tv,j · Sl,k

)
. It is clear that

n∑
k=1

S(V (T (x)))k =

1

By assumption, one infer the operator S(V (T (x))) is QSO. The proof is
completed.

From Theorem 4.2, one naturally arises the following problem: if S and T
are extreme b-bistochastic linear operators, then how b-bistochastic q.s.o. V
and operator S ◦ V ◦ T are related to each other, in terms of quasi-extremity.
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First, we denote all possible extreme points of b-bistochastic linear stochas-
tic operators, which can be described by

L1 =


1 0 0

0 1 0

0 0 1

 , L2 =


0 1 0

0 1 0

0 0 1

 , L3 =


0 0 1

0 1 0

0 0 1

 ,

L4 =


1 0 0

0 0 1

0 0 1

 , L5 =


0 1 0

0 0 1

0 0 1

 , L6 =


0 0 1

0 0 1

0 0 1

 .
Due to (2.14) any b-bistochastic q.s.o. has the following form

V =


A1 A2 1−A1 −A2

B1 B2 1−B1 −B2

C1 c2 1− C1 − C2

 ,
B1 B2 1−B1 −B2

0 D2 1−D2 −D2

0 E2 1−D1 −D2

 ,
C1 C2 1− C1 − C2

0 E2 1−D1 −D2

0 0 1


Henceforth, by Qa,b we denote the operator La ◦ V ◦ Lb (a, b = 1, 6) and its
cubic matrix we denote by {qe1 , qe2 , qe3}, where qev = (quv,k)

3
u,k=1. Here

quv,k =

3∑
i,j,l=1

Pij,l · Lb(u, i) · Lb(v, j) · La(l, k).

where {Pij,k} are hereditary coefficients of V , whereas Lc(i, j) is the element
of the matrix Lc (c = 1, 6) at ith row and jth column. Using Maple, we find

Q1,2 = Q2,2, Q1,3 = Q2,3, Q1,5 = Q2,5 = Q3,5, (4.1)
Q1,6 = Q2,6 = Q3,6 = Q4,2 = Q4,3 = Q4,5 = Q4,6 = Q5,2 =

Q5,3 = Q5,5 = Q5,6 = Q6,1 = Q6,2 = Q6,3 = Q6,4 = Q6,5 = Q6,6 (4.2)

All possible operators can be described by

Q1,1 =




A1 A2 1 − A1 − A2

B1 B2 1 − B1 − B2

C1 C2 1 − C1 − C2

 ,


B1 B2 1 − B1 − B2

0 D2 1 −D2

0 E2 1 − E2

 .


C1 C2 1 − C1 − C2

0 E2 1 − E2

0 0 1




Q1,2 =




0 D2 1 −D2

0 D2 1 −D2

0 E2 1 − E2

 ,


0 D2 1 −D2

0 D2 1 −D2

0 E2 1 − E2

 ,


0 E2 1 − E2

0 E2 1 − E2

0 0 1



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Q1,3 =




0 0 1

0 E2 1 − E2

0 0 1

 ,


0 E2 1 − E2

0 D2 1 −D2

0 E2 1 − E2

 ,


0 0 1

0 E2 1 − E2

0 0 1




Q1,4 =




A1 A2 1 − A1 − A2

C1 C2 1 − C1 − C2

C1 C2 1 − C1 − C2

 ,


C1 C2 1 − C1 − C2

0 0 1

0 0 1

 ,


C1 C2 1 − C1 − C2

0 0 1

0 0 1




Q1,5 =




0 D2 1 −D2

0 E2 1 − E2

0 E2 1 − E2

 ,


0 E2 1 − E2

0 0 1

0 0 1

 ,


0 E2 1 − E2

0 0 1

0 0 1




Q1,6 =




0 0 1

0 0 1

0 0 1

 ,


0 0 1

0 0 1

0 0 1

 ,


0 0 1

0 0 1

0 0 1




Q2,1 =




0 A1 + A2 1 − A1 − A2

0 B1 + B2 1 − B1 − B2

0 C1 + C2 1 − C1 − C2

 ,


0 B1 + B2 1 − B1 − B2

0 D2 1 −D2

0 E2 1 − E2

 ,


0 C1 + C2 1 − C1 − C2

0 E2 1 − E2

0 0 1




Q2,4 =




0 A1 + A2 1 − A1 − A2

0 C1 + C2 1 − C1 − C2

0 C1 + C2 1 − C1 − C2

 ,


0 C1 + C2 1 − C1 − C2

0 0 1

0 0 1

 ,


0 C1 + C2 1 − C1 − C2

0 0 1

0 0 1




Q3,1 =




0 A2 1 − A2

0 B2 1 − B2

0 C2 1 − C2

 ,


0 B2 1 − B2

0 D2 1 −D2

0 E2 1 − E2

 ,


0 C2 1 − C2

0 E2 1 − E2

0 0 1




Q3,4 =




0 A2 1 − A2

0 C2 1 − C2

0 C2 1 − C2

 ,


0 C2 1 − C2

0 0 1

0 0 1

 ,


0 C2 1 − C2

0 0 1

0 0 1




Q4,1 =




A1 0 1 − A1

B1 0 1 − B1

C1 0 1 − C1

 ,


B1 0 1 − B1

0 0 1

0 0 1

 ,


C1 0 1 − C1

0 0 1

0 0 1




Q4,4 =




A1 0 1 − A1

C1 0 1 − C1

C1 0 1 − C1

 ,


C1 0 1 − C1

0 0 1

0 0 1

 ,


C1 0 1 − C1

0 0 1

0 0 1




Q5,1 =




0 A1 1 − A1

0 B1 1 − B1

0 C1 1 − C1

 ,


0 B1 1 − B1

0 0 1

0 0 1

 ,


0 C1 1 − C1

0 0 1

0 0 1




Q5,4 =




0 A1 1 − A1

0 C1 1 − C1

0 C1 1 − C1

 ,


0 C1 1 − C1

0 0 1

0 0 1

 ,


0 C1 1 − C1

0 0 1

0 0 1




Theorem 4.4. Let V be a b-bistochastic q.s.o. defined on S2, then for any
a, b = 1, 6, Qa,b are b-bistochastic q.s.o.

The proof directly follows from Theorem 4.2 and above listed forms.
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The next theorem is the main result in this section that shows how operators
Qa,b are related to V in terms of quasi-extremity.

Theorem 4.5. Let V : S2 → S2 be a b-bistochastic q.s.o., then the following
statements hold:

(i) V is quasi-extreme if and only if Q1,1 is quasi-extreme;

(ii) the operators Qa,b given by (4.2) are quasi-extreme regardless of V ;

(iii) if V is quasi-extreme, then the operators Qa,b (other than in (i) and (ii))
are quasi-extreme

Proof. (i) This proof is clear since Q1,1 = V .
(ii) Taking into account Q1,6, then it is obvious Q1,6 is quasi-extreme regardless
of V .
(iii) Let us consider Q1,2. If V is quasi-extreme, it immediately implies E2 =
0 ∨ 1

2 . This means Q1,2 is quasi-extreme. Note that, the reverse may not be
true since a quasi-extremity of Q1,2 does not imply B1, C1, E2, C1+C2 = 0∨ 1

2 .
The other cases can be done by the same argument.
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